Antigen-specific activation, tolerization, and reactivation of the interleukin 4 pathway in vivo

نویسندگان

  • M Röcken
  • J Urban
  • E M Shevach
چکیده

The outcome of immune responses critically depends on the pattern of lymphokines secreted by CD4+ T cells. CD4+ T cells may differentiate into interleukin 2 (IL-2) and interferon gamma secreting T helper 1 (Th1)-like cells or IL-4/IL-5/IL-10 secreting Th2-like cells. However, the mechanisms that regulate production of IL-4 or other T cell lymphokines in vivo remain unknown. We use the superantigen, Staphylococcus enterotoxin A (SEA), as a model antigen to characterize the signals that regulate the production of IL-4 in vivo. Induction of IL-4 in normal CD4+ T cells required stimulation with both antigen and IL-4. SEA-specific CD4+ T cells produced large amounts of IL-4 when restimulated within 10 d after in vivo priming. Repetitive application of both signals was required to prevent downregulation of IL-4 production. Although controversy exists regarding the susceptibility of Th2-like cells to tolerogenic signals, high doses of superantigen readily abolished the capacity to produce IL-4 in both naive T cells and in T cells already primed for IL-4 production. Infection with the nematode, Nippostrongylus brasiliensis, reversed the established T cell tolerance, whereas the signals which induced IL-4 production in normal T cells, antigen and IL-4, were not capable of reversing superantigen-specific tolerance in vivo. The major parameter that correlated with the capacity of parasitic infection to break tolerance was magnitude of the lymphoproliferation seen during the course of the infection. The capacity to activate or tolerize the IL-4 pathway in an antigen-specific fashion should prove useful in the design of antigen-specific therapies for autoimmune and allergic diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antigen - specific Activation , Tolerization , and Reactivation of the Interleuldn 4 Pathway In Vivo

The outcome of immune responses critically depends on the pattern of lymphokines secreted by CD4 + T cells. CD4 + T cells may differentiate into interleuldn 2 (IL-2) and interferon 3' secreting T helper 1 (Thl)-like cells or IL-4/IL-5/IL-IO secreting Th2-1ike cells. However, the mechanisms that regulate production of IL-4 or other T cell lymphokines in vivo remain unknown. We use the superantig...

متن کامل

Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro

Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 8...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

پروتئین شوک حرارتی؛ کاندید واکسن سرطان

Background: Tumor cells express antigens that can be recognized by immune system as foreign particles. Heat shock proteins (HSPs) are molecular chaperones that bind to tumor antigens and mediate their uptake into antigen presenting cells. Methods: This articles is a review article and its data has been collected and categorized from the articles in the field of cancer immunotherapy. All the ar...

متن کامل

REASSOCIATION AND REACTIVATION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE FROM STREPTOMYCES AUREOFACIENS AFTER DENATURATION BY 6 M UREA

Glucose 6-phosphate dehydrogenase (G6PD) from Streptomyces aureofaciens was purified and denatured in 6 M urea. Denaturation led to complete dissociation of the enzyme into its inactive monomers, 98% loss of the enzyme activity, about 30% decrease in the protein fluorescence and a 10 nm red shift in the emission maximum. Dilution of urea-denatured enzyme resulted in regaining of the enzyme acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 179  شماره 

صفحات  -

تاریخ انتشار 1994